On Approximation to Analytic Functions by Rational Functions

نویسندگان

  • H. MARGARET ELLIOTT
  • H. M. ELLIOTT
چکیده

Let f(z) be analytic in the interior of a rectifiable Jordan curve C and continuous in the corresponding closed region C. The relation between continuity properties of f(z) on C and degree of approximarion to f(z) by polynomials irn(z) in z of respective degrees n, n = 1, 2, • • • , has been extensively studied. In the present paper we study the relation between continuity properties of f(z) on C and degree of approximation to f(z) on C by rational functions rn(z) in z of respective degrees n whose poles lie exterior to C. We thus deal with what is frequently referred to in the theory as Problem a.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A method to obtain the best uniform polynomial approximation for the family of rational function

In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion, we obtain the best uniform polynomial approximation out of P2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...

متن کامل

The best uniform polynomial approximation of two classes of rational functions

In this paper we obtain the explicit form of the best uniform polynomial approximations out of Pn of two classes of rational functions using properties of Chebyshev polynomials. In this way we present some new theorems and lemmas. Some examples will be given to support the results.

متن کامل

A rational Chebyshev functions approach for Fredholm-Volterra integro-differential equations

The purpose of this study is to present an approximate numerical method for solving high order linear Fredholm-Volterra integro-differential equations in terms of rational Chebyshev functions under the mixed conditions. The method is based on the approximation by the truncated rational Chebyshev series. Finally, the effectiveness of the method is illustrated in several numerical examples. The p...

متن کامل

Orthogonal rational functions and rational modifications of a measure on the unit circle

In this paper we present formulas expressing the orthogonal rational functions associated with a rational modification of a positive bounded Borel measure on the unit circle, in terms of the orthogonal rational functions associated with the initial measure. These orthogonal rational functions are assumed to be analytic inside the closed unit disc, but the extension to the case of orthogonal rat...

متن کامل

Approximation by Rational Functions in

The denseness of rational functions with prescribed poles in the Hardy space and disk algebra is considered. Notations. C complex plane D unit disk fz : jzj < 1g Tunit circle fz : jzj = 1g H p Hardy space of analytic functions on D kfk 1 := supfjf(z)j : z 2 D g, the H 1 norm A(D) disk algebra of functions analytic on D and continuous on D P n set of polynomials of degree at most n

متن کامل

APPROXIMATION OF 3D-PARAMETRIC FUNCTIONS BY BICUBIC B-SPLINE FUNCTIONS

In this paper we propose a method to approximate a parametric 3 D-function by bicubic B-spline functions

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010